86 research outputs found

    Inapproximability of Maximum Biclique Problems, Minimum kk-Cut and Densest At-Least-kk-Subgraph from the Small Set Expansion Hypothesis

    Full text link
    The Small Set Expansion Hypothesis (SSEH) is a conjecture which roughly states that it is NP-hard to distinguish between a graph with a small subset of vertices whose edge expansion is almost zero and one in which all small subsets of vertices have expansion almost one. In this work, we prove inapproximability results for the following graph problems based on this hypothesis: - Maximum Edge Biclique (MEB): given a bipartite graph GG, find a complete bipartite subgraph of GG with maximum number of edges. - Maximum Balanced Biclique (MBB): given a bipartite graph GG, find a balanced complete bipartite subgraph of GG with maximum number of vertices. - Minimum kk-Cut: given a weighted graph GG, find a set of edges with minimum total weight whose removal partitions GG into kk connected components. - Densest At-Least-kk-Subgraph (DALkkS): given a weighted graph GG, find a set SS of at least kk vertices such that the induced subgraph on SS has maximum density (the ratio between the total weight of edges and the number of vertices). We show that, assuming SSEH and NP \nsubseteq BPP, no polynomial time algorithm gives n1εn^{1 - \varepsilon}-approximation for MEB or MBB for every constant ε>0\varepsilon > 0. Moreover, assuming SSEH, we show that it is NP-hard to approximate Minimum kk-Cut and DALkkS to within (2ε)(2 - \varepsilon) factor of the optimum for every constant ε>0\varepsilon > 0. The ratios in our results are essentially tight since trivial algorithms give nn-approximation to both MEB and MBB and efficient 22-approximation algorithms are known for Minimum kk-Cut [SV95] and DALkkS [And07, KS09]. Our first result is proved by combining a technique developed by Raghavendra et al. [RST12] to avoid locality of gadget reductions with a generalization of Bansal and Khot's long code test [BK09] whereas our second result is shown via elementary reductions.Comment: A preliminary version of this work will appear at ICALP 2017 under a different title "Inapproximability of Maximum Edge Biclique, Maximum Balanced Biclique and Minimum k-Cut from the Small Set Expansion Hypothesis

    A Birthday Repetition Theorem and Complexity of Approximating Dense CSPs

    Get PDF
    A (k×l)(k \times l)-birthday repetition Gk×l\mathcal{G}^{k \times l} of a two-prover game G\mathcal{G} is a game in which the two provers are sent random sets of questions from G\mathcal{G} of sizes kk and ll respectively. These two sets are sampled independently uniformly among all sets of questions of those particular sizes. We prove the following birthday repetition theorem: when G\mathcal{G} satisfies some mild conditions, val(Gk×l)val(\mathcal{G}^{k \times l}) decreases exponentially in Ω(kl/n)\Omega(kl/n) where nn is the total number of questions. Our result positively resolves an open question posted by Aaronson, Impagliazzo and Moshkovitz (CCC 2014). As an application of our birthday repetition theorem, we obtain new fine-grained hardness of approximation results for dense CSPs. Specifically, we establish a tight trade-off between running time and approximation ratio for dense CSPs by showing conditional lower bounds, integrality gaps and approximation algorithms. In particular, for any sufficiently large ii and for every k2k \geq 2, we show the following results: - We exhibit an O(q1/i)O(q^{1/i})-approximation algorithm for dense Max kk-CSPs with alphabet size qq via Ok(i)O_k(i)-level of Sherali-Adams relaxation. - Through our birthday repetition theorem, we obtain an integrality gap of q1/iq^{1/i} for Ω~k(i)\tilde\Omega_k(i)-level Lasserre relaxation for fully-dense Max kk-CSP. - Assuming that there is a constant ϵ>0\epsilon > 0 such that Max 3SAT cannot be approximated to within (1ϵ)(1-\epsilon) of the optimal in sub-exponential time, our birthday repetition theorem implies that any algorithm that approximates fully-dense Max kk-CSP to within a q1/iq^{1/i} factor takes (nq)Ω~k(i)(nq)^{\tilde \Omega_k(i)} time, almost tightly matching the algorithmic result based on Sherali-Adams relaxation.Comment: 45 page

    Approximating Dense Max 2-CSPs

    Get PDF
    In this paper, we present a polynomial-time algorithm that approximates sufficiently high-value Max 2-CSPs on sufficiently dense graphs to within O(Nε)O(N^{\varepsilon}) approximation ratio for any constant ε>0\varepsilon > 0. Using this algorithm, we also achieve similar results for free games, projection games on sufficiently dense random graphs, and the Densest kk-Subgraph problem with sufficiently dense optimal solution. Note, however, that algorithms with similar guarantees to the last algorithm were in fact discovered prior to our work by Feige et al. and Suzuki and Tokuyama. In addition, our idea for the above algorithms yields the following by-product: a quasi-polynomial time approximation scheme (QPTAS) for satisfiable dense Max 2-CSPs with better running time than the known algorithms

    Inapproximability of Maximum Edge Biclique, Maximum Balanced Biclique and Minimum k-Cut from the Small Set Expansion Hypothesis

    Get PDF
    The Small Set Expansion Hypothesis (SSEH) is a conjecture which roughly states that it is NP-hard to distinguish between a graph with a small set of vertices whose expansion is almost zero and one in which all small sets of vertices have expansion almost one. In this work, we prove conditional inapproximability results for the following graph problems based on this hypothesis: - Maximum Edge Biclique (MEB): given a bipartite graph G, find a complete bipartite subgraph of G with maximum number of edges. We show that, assuming SSEH and that NP != BPP, no polynomial time algorithm gives n^{1 - epsilon}-approximation for MEB for every constant epsilon > 0. - Maximum Balanced Biclique (MBB): given a bipartite graph G, find a balanced complete bipartite subgraph of G with maximum number of vertices. Similar to MEB, we prove n^{1 - epsilon} ratio inapproximability for MBB for every epsilon > 0, assuming SSEH and that NP != BPP. - Minimum k-Cut: given a weighted graph G, find a set of edges with minimum total weight whose removal splits the graph into k components. We prove that this problem is NP-hard to approximate to within (2 - epsilon) factor of the optimum for every epsilon > 0, assuming SSEH. The ratios in our results are essentially tight since trivial algorithms give n-approximation to both MEB and MBB and 2-approximation algorithms are known for Minimum k-Cut [Saran and Vazirani, SIAM J. Comput., 1995]. Our first two results are proved by combining a technique developed by Raghavendra, Steurer and Tulsiani [Raghavendra et al., CCC, 2012] to avoid locality of gadget reductions with a generalization of Bansal and Khot\u27s long code test [Bansal and Khot, FOCS, 2009] whereas our last result is shown via an elementary reduction

    Computing an Approximately Optimal Agreeable Set of Items

    Full text link
    We study the problem of finding a small subset of items that is \emph{agreeable} to all agents, meaning that all agents value the subset at least as much as its complement. Previous work has shown worst-case bounds, over all instances with a given number of agents and items, on the number of items that may need to be included in such a subset. Our goal in this paper is to efficiently compute an agreeable subset whose size approximates the size of the smallest agreeable subset for a given instance. We consider three well-known models for representing the preferences of the agents: ordinal preferences on single items, the value oracle model, and additive utilities. In each of these models, we establish virtually tight bounds on the approximation ratio that can be obtained by algorithms running in polynomial time.Comment: A preliminary version appeared in Proceedings of the 26th International Joint Conference on Artificial Intelligence (IJCAI), 201

    When Do Envy-Free Allocations Exist?

    Full text link
    We consider a fair division setting in which mm indivisible items are to be allocated among nn agents, where the agents have additive utilities and the agents' utilities for individual items are independently sampled from a distribution. Previous work has shown that an envy-free allocation is likely to exist when m=Ω(nlogn)m=\Omega(n\log n) but not when m=n+o(n)m=n+o(n), and left open the question of determining where the phase transition from non-existence to existence occurs. We show that, surprisingly, there is in fact no universal point of transition---instead, the transition is governed by the divisibility relation between mm and nn. On the one hand, if mm is divisible by nn, an envy-free allocation exists with high probability as long as m2nm\geq 2n. On the other hand, if mm is not "almost" divisible by nn, an envy-free allocation is unlikely to exist even when m=Θ(nlogn/loglogn)m=\Theta(n\log n/\log\log n).Comment: Appears in the 33rd AAAI Conference on Artificial Intelligence (AAAI), 201
    corecore